3.1037 \(\int \frac {1}{(c+a^2 c x^2)^{5/2} \tan ^{-1}(a x)^{3/2}} \, dx\)

Optimal. Leaf size=157 \[ -\frac {3 \sqrt {\frac {\pi }{2}} \sqrt {a^2 x^2+1} S\left (\sqrt {\frac {2}{\pi }} \sqrt {\tan ^{-1}(a x)}\right )}{a c^2 \sqrt {a^2 c x^2+c}}-\frac {\sqrt {\frac {3 \pi }{2}} \sqrt {a^2 x^2+1} S\left (\sqrt {\frac {6}{\pi }} \sqrt {\tan ^{-1}(a x)}\right )}{a c^2 \sqrt {a^2 c x^2+c}}-\frac {2}{a c \left (a^2 c x^2+c\right )^{3/2} \sqrt {\tan ^{-1}(a x)}} \]

[Out]

-3/2*FresnelS(2^(1/2)/Pi^(1/2)*arctan(a*x)^(1/2))*2^(1/2)*Pi^(1/2)*(a^2*x^2+1)^(1/2)/a/c^2/(a^2*c*x^2+c)^(1/2)
-1/2*FresnelS(6^(1/2)/Pi^(1/2)*arctan(a*x)^(1/2))*6^(1/2)*Pi^(1/2)*(a^2*x^2+1)^(1/2)/a/c^2/(a^2*c*x^2+c)^(1/2)
-2/a/c/(a^2*c*x^2+c)^(3/2)/arctan(a*x)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.27, antiderivative size = 157, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {4902, 4971, 4970, 4406, 3305, 3351} \[ -\frac {3 \sqrt {\frac {\pi }{2}} \sqrt {a^2 x^2+1} S\left (\sqrt {\frac {2}{\pi }} \sqrt {\tan ^{-1}(a x)}\right )}{a c^2 \sqrt {a^2 c x^2+c}}-\frac {\sqrt {\frac {3 \pi }{2}} \sqrt {a^2 x^2+1} S\left (\sqrt {\frac {6}{\pi }} \sqrt {\tan ^{-1}(a x)}\right )}{a c^2 \sqrt {a^2 c x^2+c}}-\frac {2}{a c \left (a^2 c x^2+c\right )^{3/2} \sqrt {\tan ^{-1}(a x)}} \]

Antiderivative was successfully verified.

[In]

Int[1/((c + a^2*c*x^2)^(5/2)*ArcTan[a*x]^(3/2)),x]

[Out]

-2/(a*c*(c + a^2*c*x^2)^(3/2)*Sqrt[ArcTan[a*x]]) - (3*Sqrt[Pi/2]*Sqrt[1 + a^2*x^2]*FresnelS[Sqrt[2/Pi]*Sqrt[Ar
cTan[a*x]]])/(a*c^2*Sqrt[c + a^2*c*x^2]) - (Sqrt[(3*Pi)/2]*Sqrt[1 + a^2*x^2]*FresnelS[Sqrt[6/Pi]*Sqrt[ArcTan[a
*x]]])/(a*c^2*Sqrt[c + a^2*c*x^2])

Rule 3305

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Sin[(f*x^2)/d], x], x,
Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3351

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelS[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rule 4406

Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int[E
xpandTrigReduce[(c + d*x)^m, Sin[a + b*x]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0]
&& IGtQ[p, 0]

Rule 4902

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[((d + e*x^2)^(q + 1)
*(a + b*ArcTan[c*x])^(p + 1))/(b*c*d*(p + 1)), x] - Dist[(2*c*(q + 1))/(b*(p + 1)), Int[x*(d + e*x^2)^q*(a + b
*ArcTan[c*x])^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && LtQ[q, -1] && LtQ[p, -1]

Rule 4970

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Dist[d^q/c^(m
 + 1), Subst[Int[((a + b*x)^p*Sin[x]^m)/Cos[x]^(m + 2*(q + 1)), x], x, ArcTan[c*x]], x] /; FreeQ[{a, b, c, d,
e, p}, x] && EqQ[e, c^2*d] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] && (IntegerQ[q] || GtQ[d, 0])

Rule 4971

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Dist[(d^(q +
1/2)*Sqrt[1 + c^2*x^2])/Sqrt[d + e*x^2], Int[x^m*(1 + c^2*x^2)^q*(a + b*ArcTan[c*x])^p, x], x] /; FreeQ[{a, b,
 c, d, e, p}, x] && EqQ[e, c^2*d] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] &&  !(IntegerQ[q] || GtQ[d, 0])

Rubi steps

\begin {align*} \int \frac {1}{\left (c+a^2 c x^2\right )^{5/2} \tan ^{-1}(a x)^{3/2}} \, dx &=-\frac {2}{a c \left (c+a^2 c x^2\right )^{3/2} \sqrt {\tan ^{-1}(a x)}}-(6 a) \int \frac {x}{\left (c+a^2 c x^2\right )^{5/2} \sqrt {\tan ^{-1}(a x)}} \, dx\\ &=-\frac {2}{a c \left (c+a^2 c x^2\right )^{3/2} \sqrt {\tan ^{-1}(a x)}}-\frac {\left (6 a \sqrt {1+a^2 x^2}\right ) \int \frac {x}{\left (1+a^2 x^2\right )^{5/2} \sqrt {\tan ^{-1}(a x)}} \, dx}{c^2 \sqrt {c+a^2 c x^2}}\\ &=-\frac {2}{a c \left (c+a^2 c x^2\right )^{3/2} \sqrt {\tan ^{-1}(a x)}}-\frac {\left (6 \sqrt {1+a^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {\cos ^2(x) \sin (x)}{\sqrt {x}} \, dx,x,\tan ^{-1}(a x)\right )}{a c^2 \sqrt {c+a^2 c x^2}}\\ &=-\frac {2}{a c \left (c+a^2 c x^2\right )^{3/2} \sqrt {\tan ^{-1}(a x)}}-\frac {\left (6 \sqrt {1+a^2 x^2}\right ) \operatorname {Subst}\left (\int \left (\frac {\sin (x)}{4 \sqrt {x}}+\frac {\sin (3 x)}{4 \sqrt {x}}\right ) \, dx,x,\tan ^{-1}(a x)\right )}{a c^2 \sqrt {c+a^2 c x^2}}\\ &=-\frac {2}{a c \left (c+a^2 c x^2\right )^{3/2} \sqrt {\tan ^{-1}(a x)}}-\frac {\left (3 \sqrt {1+a^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {\sin (x)}{\sqrt {x}} \, dx,x,\tan ^{-1}(a x)\right )}{2 a c^2 \sqrt {c+a^2 c x^2}}-\frac {\left (3 \sqrt {1+a^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {\sin (3 x)}{\sqrt {x}} \, dx,x,\tan ^{-1}(a x)\right )}{2 a c^2 \sqrt {c+a^2 c x^2}}\\ &=-\frac {2}{a c \left (c+a^2 c x^2\right )^{3/2} \sqrt {\tan ^{-1}(a x)}}-\frac {\left (3 \sqrt {1+a^2 x^2}\right ) \operatorname {Subst}\left (\int \sin \left (x^2\right ) \, dx,x,\sqrt {\tan ^{-1}(a x)}\right )}{a c^2 \sqrt {c+a^2 c x^2}}-\frac {\left (3 \sqrt {1+a^2 x^2}\right ) \operatorname {Subst}\left (\int \sin \left (3 x^2\right ) \, dx,x,\sqrt {\tan ^{-1}(a x)}\right )}{a c^2 \sqrt {c+a^2 c x^2}}\\ &=-\frac {2}{a c \left (c+a^2 c x^2\right )^{3/2} \sqrt {\tan ^{-1}(a x)}}-\frac {3 \sqrt {\frac {\pi }{2}} \sqrt {1+a^2 x^2} S\left (\sqrt {\frac {2}{\pi }} \sqrt {\tan ^{-1}(a x)}\right )}{a c^2 \sqrt {c+a^2 c x^2}}-\frac {\sqrt {\frac {3 \pi }{2}} \sqrt {1+a^2 x^2} S\left (\sqrt {\frac {6}{\pi }} \sqrt {\tan ^{-1}(a x)}\right )}{a c^2 \sqrt {c+a^2 c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.40, size = 158, normalized size = 1.01 \[ \frac {-8+\left (a^2 x^2+1\right )^{3/2} \left (3 \sqrt {-i \tan ^{-1}(a x)} \Gamma \left (\frac {1}{2},-i \tan ^{-1}(a x)\right )+3 \sqrt {i \tan ^{-1}(a x)} \Gamma \left (\frac {1}{2},i \tan ^{-1}(a x)\right )+\sqrt {3} \left (\sqrt {-i \tan ^{-1}(a x)} \Gamma \left (\frac {1}{2},-3 i \tan ^{-1}(a x)\right )+\sqrt {i \tan ^{-1}(a x)} \Gamma \left (\frac {1}{2},3 i \tan ^{-1}(a x)\right )\right )\right )}{4 a c \left (a^2 c x^2+c\right )^{3/2} \sqrt {\tan ^{-1}(a x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/((c + a^2*c*x^2)^(5/2)*ArcTan[a*x]^(3/2)),x]

[Out]

(-8 + (1 + a^2*x^2)^(3/2)*(3*Sqrt[(-I)*ArcTan[a*x]]*Gamma[1/2, (-I)*ArcTan[a*x]] + 3*Sqrt[I*ArcTan[a*x]]*Gamma
[1/2, I*ArcTan[a*x]] + Sqrt[3]*(Sqrt[(-I)*ArcTan[a*x]]*Gamma[1/2, (-3*I)*ArcTan[a*x]] + Sqrt[I*ArcTan[a*x]]*Ga
mma[1/2, (3*I)*ArcTan[a*x]])))/(4*a*c*(c + a^2*c*x^2)^(3/2)*Sqrt[ArcTan[a*x]])

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a^2*c*x^2+c)^(5/2)/arctan(a*x)^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \mathit {sage}_{0} x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a^2*c*x^2+c)^(5/2)/arctan(a*x)^(3/2),x, algorithm="giac")

[Out]

sage0*x

________________________________________________________________________________________

maple [F]  time = 1.65, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (a^{2} c \,x^{2}+c \right )^{\frac {5}{2}} \arctan \left (a x \right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a^2*c*x^2+c)^(5/2)/arctan(a*x)^(3/2),x)

[Out]

int(1/(a^2*c*x^2+c)^(5/2)/arctan(a*x)^(3/2),x)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: RuntimeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a^2*c*x^2+c)^(5/2)/arctan(a*x)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: Error executing code in Maxima: expt: undefined: 0 to a negative e
xponent.

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{{\mathrm {atan}\left (a\,x\right )}^{3/2}\,{\left (c\,a^2\,x^2+c\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(atan(a*x)^(3/2)*(c + a^2*c*x^2)^(5/2)),x)

[Out]

int(1/(atan(a*x)^(3/2)*(c + a^2*c*x^2)^(5/2)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a**2*c*x**2+c)**(5/2)/atan(a*x)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________